

Business Case for Natural Refrigerants

June 12-13, 2023 Washington D.C.

A Case Study for CO₂ Condensing Units in Various Climates

M&M Carnot & SubZero Constructors

Introduction

- In North America, there is a growing need for natural refrigerant condensing units
- M&M Carnot and SubZero Constructors have collaborated on several TCCO2 freezer and cooler projects
- Key design features of TCCO2 condensing units
- Comparison of TCCO2 vs. R448A systems for three different locations (38F storage rooms)
 - Efficiency
 - Total installation costs
 - Operational costs
 - Life cycle costs
- Installation photos
- Barriers and challenges
- Opportunities and future plans

Key Design Features For:

- Reliability
 - High pressure design eliminates the need for back-up condensing unit or generator
 - High efficiency oil management system with coalescing oil separator
- Efficiency
 - Transcritical compressors with VFD drives on lead machines
 - Integrated adiabatic gas cooler with EC fans
 - Evaporator fan speed control as a standard
- Installation
 - Single point electric with power distribution to evaporators
 - All evaporator control valves integrated into condensing unit field piping required only
 - Insulated vessels and cold piping

Efficiency Analysis - San Diego, CA - 100TR

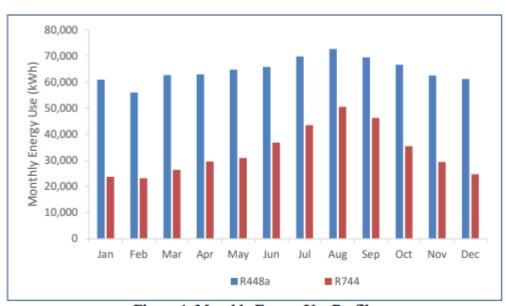


Figure 4: Monthly Energy Use Profile

Table 10: R448a Annual Energy Use by Component

R448a System	Annual Use	Unit
Compressors	398,556	kWh
Condenser Fans	61,295	kWh
Evaporator Fans	261,398	kWh
Electric Defrost	53,765	kWh
Total	775,014	kWh

Table 11: R744 Annual Energy Use by Component + Savings

R744 System	Annual Use	Unit
Compressors	307,254	kWh
Gas Cooler Fans	62,853	kWh
Evaporator Fans	30,189	kWh
Total	400,296	kWh
Energy Savings over R448a	374,718	kWh

Table 12: R744 Systems Annual Water Use

Component	Water Use	Unit
Adiabatic Gas Coolers	190,233	Gallons
Annual Water Use	190,233	Gallons

Efficiency Analysis – Kissimmee, FL – 75TR

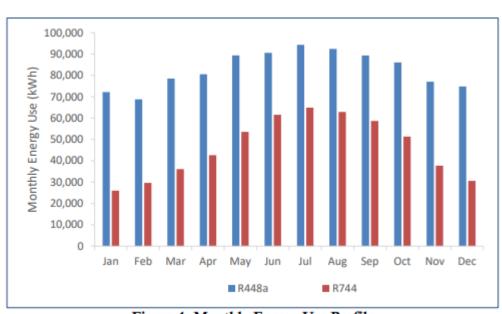


Figure 4: Monthly Energy Use Profile

Table 10: R448a	Annual	Energy	He hy	Component
Table IV. K440a	Aiiiiuai	EHCIZY	USC DY	Component

R448a System	Annual Use	Unit
Compressors	492,285	kWh
Condenser Fans	81,443	kWh
Evaporator Fans	348,531	kWh
Electric Defrost	71,701	kWh
Total	993,960	kWh

Table 11: R744 Annual Energy Use by Component + Savings

B744 System	Annu	Annual Use		
R744 System	4-Fan	3-Fan	Unit	
Compressors	451,625	478,369	kWh	
Gas Cooler Fans	62,513	46,885	kWh	
Evaporator Fans	41,364	41,364	kWh	
Total	555,503	566,618	kWh	
Energy Savings	438,458	427,342	kWh	

Table 12: R744 Systems Annual Water Use

Commont	Wate	TI-:4	
Component	4-Fan	3-Fan	Unit
Adiabatic Gas Coolers	256,176	192,132	Gallons
Annual Water Use	256,176	192,132	Gallons

Efficiency Analysis – Indianapolis, IN – 125TR

Figure 4: Monthly Energy Use Profile

Table 10: R448a Annual Energy Use by Component

R448a System	Annual Use	Unit
Compressors	348,092	kWh
Condenser Fans	47,355	kWh
Evaporator Fans	261,398	kWh
Electric Defrost	53,765	kWh
Total	710,609	kWh

Table 11: R744 Annual Energy Use by Component + Savings

Tueste 111 117 111 1111 2111 2111 211 211 211			
Annual Use	Unit		
259,846	kWh		
42,010	kWh		
26,333	kWh		
328,188	kWh		
382,421	kWh		
	Annual Use 259,846 42,010 26,333 328,188		

Table 12: R744 Systems Annual Water Use

Component	Water Use	Unit
Adiabatic Gas Coolers	162,761	Gallons
Annual Water Use	162,761	Gallons

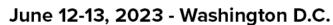
Cost Analysis

Location System Type	Installation Cost	Annual Operating Cost	Life Cycle Cost - 20	Payback Period Using	
Location	System Type	installation Cost	Annual Operating Cost	Years	R744 (years)
San Diago CA	R448a - 100TR	\$957,500	\$104,704	\$3,751,588	2.0
San Diego, CA	R744 - 100TR	\$1,154,800	\$55,744	\$2,919,687	3.8
Vissimos EI	R448a - 75TR	\$699,500	\$110,429	\$3,608,079	2.5
Kissimmee, FL	R744 - 75TR	\$824,900	\$62,254	\$2,719,987	2.3
Indiananolis IN	R448a - 125TR	\$1,325,750	\$71,629	\$3,458,338	6.4
Indianapolis, IN	R744 - 125TR	\$1,586,800	\$33,466	\$2,906,124	0.4
Average % Diff	ference Using R744	19%	-48%	-21%	

Location	Energy	Water
	\$/kWh	\$/kgal
San Diego, CA	0.1351	8.749
Kissimmee, FL	0.1111	2.1
Indianapolis, IN	0.1008	2.3645

	Average Annual Maintenance Cost
R448a (5 units)	\$35,000
R744 (2 units)	\$32,500

- 4.2 year average payback period for using R744
- Efficiency gains are even greater in Freezers



Installation Photos

Barriers and Challenges For:

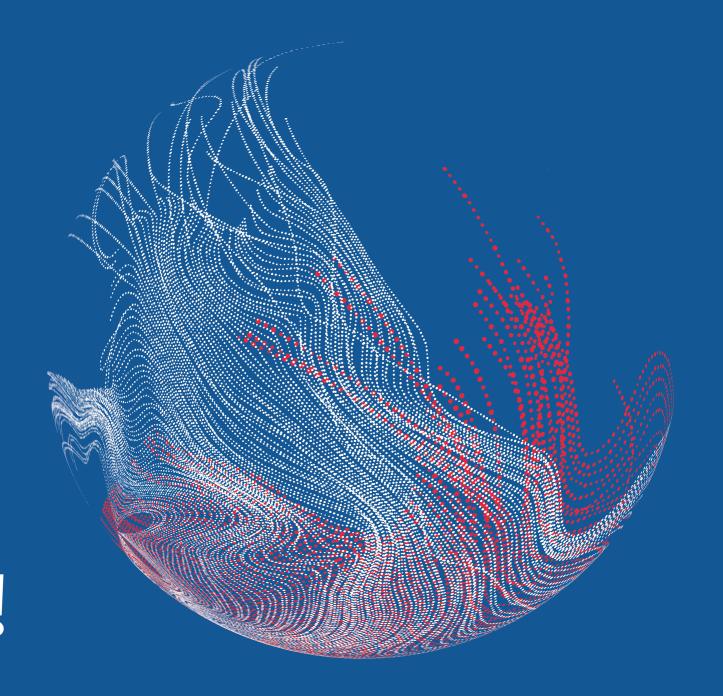
- End Users
 - Initial cost of TCCO2 vs. basic synthetic condensing units
 - Local maintenance expertise for TCCO2 systems
 - Lower efficiency in high wet-bulb climates
- Installation/Manufacturing
 - Fewer and heavier rooftop condensing units present challenges for the structural engineer
 - Increasing costs for manufacturing/installing condensing units for all applications
- Commissioning/Service
 - Commercial controls platform with limited capability and user interface
 - Extended commissioning time with a newer product line

Opportunities for:

- End Users
 - Contractor/manufacturer collaboration to provide lowest first cost TCCO2 system
 - Grow the nationwide network of TCCO2 trained service technicians.
 - Implement climate specific design features to maximize efficiency
- Installation/Manufacturing
 - Consider alternative equipment layout vs. traditional rooftop placement
 - Increase standard size range of condensing units to accommodate a wider range of applications
- Commissioning/Service
 - Standardize with industrial controls platform and larger HMI touchscreen for operating/troubleshooting
 - Continuous improvement in engineering/manufacturing to reduce commissioning time

Future Plans:

- Increase standard size range of TCCO2 condensing unit
- Testing TCCO2 condensing units as air source heat pumps
- Standardize with Logix Controls touchscreen with system flow diagram
- Provide Logix supervisory system to network multiple condensing units



Thank you for listening!

